Decentralized Robust PI Controller Design for an Industrial Utility Boiler - An IMC Method

نویسندگان

  • Batool Labibi
  • Horacio Jose Marquez
  • Tongwen Chen
چکیده

Abstract: This paper presents a scheme for designing a robust decentralized PI controller for an industrial utility boiler system. First, a new method for designing robust decentralized PI controllers for uncertain LTI MIMO systems is presented. Sufficient conditions for closedloop stability and diagonal dominance of a multivariable system are given. For each isolated subsystem a first order approximation is obtained. Then, achieving robust stability and closedloop diagonal dominance is formulated as local robust performance problems. It is shown by selecting time constants of the closed-loop isolated subsystems appropriately, these local robust performance problems are solved and the interactions between closed-loop stabilized subsystems are attenuated. The internal model control (IMC) method is used to design local PI controllers. The suggested design strategy is applicable to unstable systems as well. Thereafter, the nonlinear model of an industrial utility boiler is linearized about its operating points and the nonlinearity is modeled as uncertainty for a nominal LTI MIMO system. Using the new proposed method, a decentralized PI controller for the uncertain LTI nominal model is designed. The designed controller is applied to the real system. The simulation results show the effectiveness of the proposed methodology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivariable robust controller design for a boiler system

In an industrial boiler system, multiloop (decentralized) proportional-integral (PI) control is used because of its implementational advantages. We show that such control schemes sacrifice robustness and performance of the overall system. In particular, under normal boiler operating conditions, we design a robust multivariable controller using loop-shaping techniques; for consideration in imple...

متن کامل

A Unified IMC based PI/PID Controller Tuning Approach for Time Delay Processes

This paper proposes a new PI/PID controller tuning method within filtered Smith predictor (FSP) configuration in order to deal with various types of time delay processes including stable, unstable and integrating delay dominant and slow dynamic processes. The proposed PI/PID controller is designed based on the IMC principle and is tuned using a new constraint and without requiring any approxima...

متن کامل

Improved independent design of robust decentralized controllers

The procedure for independent design of robust decentralized controllers proposed by Skogestad and Morari is improved by requiring that each individual controller is of the internal model control (IMC) type. It is shown how to find bounds on the magnitude of the IMC filter time constants such that robust stability or performance is guaranteed. In contrast, Skogestad and Morari found bounds on t...

متن کامل

Robust Decentralized Controller Design: Subsystem Approach

The paper addresses the problem of the robust output feedback PI controller design for complex large-scale stable systems with a state decentralized control structure. A decentralized control design procedure is proposed for static output feedback control which is based on solving robust control design problems of subsystems’ size. The presented approach is based on the Generalized Gershgorin T...

متن کامل

Decentralized Robust Power System Stabilizer Design

This paper suggests a method for designing PSS to damp multi-machine power system oscillations.  The method is based on robust control theory. First, the conventional method for designing robust controller in LMI framework is illustrated. Then, the suggested method is given, in which, a PID output feedback controller is tuned using the LMI approach. Mostly, the classical methods are used t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008